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Abstract. We analyse the effects on the stopping power due to the geometrical structure of swift
B+

n (n = 2–6) ions incident on amorphous carbon targets. We use the dielectric formalism to
describe both the interaction of the projectile with the stopping medium and the vicinage effects
on the atomic ions resulting from the dissociation of each B+

n ion. The variation of the energy loss
with the temporal evolution of the relative positions of the atomic ions, due to Coulomb explosion,
has also been taken into account. The calculated stopping power ratio for each B+

n ion reproduces
fairly well the main trends, as a function of the dwell time, observed in the available experimental
data. The differences among the stopping power ratios of the B+

n ions disappear as the number of
atomic ions, n, increases.

1. Introduction

Important phenomena appear in the interaction of fast molecular ions with solids, which are
related to the charge state of the ions [1], the molecular structure [2–4], the modification and
damage of materials [5–7], and other interesting processes in atomic collisions in solids.

When a swift molecular ion impinges on a solid, only a few collisions are needed to strip
away its binding electrons. The atomic ions resulting from the molecular dissociation travel
in a correlated manner under the influence of the mutual Coulomb force and, therefore, they
become separated as they advance through the target; this is called Coulomb explosion. The
difference between the energy loss of a molecular ion and the sum of the energy losses of
its individual constituents was first analysed by Brandt et al [8], and subsequently several
theoretical and experimental papers have been published on this [9–16].

Recently, the stopping power of carbon foils for swift B+
n (n = 2–4) ions with the energy

of 0.8 MeV/atom has been measured [17], and a theoretical work [18] described the electronic
energy loss of clusters in solids in an unsatisfactory manner. The purpose of this paper is to
analyse the influence of the geometrical structure of individual boron molecules on the vicinage
effects that affect the stopping power, for B+

n (n = 2–6).
For the range of projectile energies that we will consider (several hundreds of keV per

atom), the nuclear energy loss is negligible compared to the electronic energy loss of the
molecular ion, which will be calculated using a model based on the dielectric formalism [19].
The energy lost by the components of the molecular ions after they exit from the foil is obtained
as an average of the instantaneous energy loss over the dwell time; in this manner we take into
account the time variation of the relative distance between the atomic ions dissociated from the
molecular ion, as a result of the Coulomb explosion. The electronic density of the atomic ions
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is described by means of hydrogen-like orbitals, and the average number of electrons bound
to each atomic ion is calculated through the degree of ionization as a function of the projectile
velocity [20]. We consider a random orientation of the incident boron molecular ion as in the
experimental situation that we are going to compare with. Note that we use atomic units in
this paper†, except where otherwise stated.

This paper is organized as follows. In section 2 we introduce the model used in our
calculations; a presentation of the results and a comparison with the available experimental
data is made in section 3. Finally, the conclusions are presented in section 4.

2. Model

The energy loss of a molecular ion moving through a solid shows important differences,
called vicinage or interference effects, when compared with the energy lost by its individual
atomic constituents. The origin of these effects is the interference of the electronic excitations
produced in the solid by the correlated motion of the atomic ions. A useful magnitude that
quantifies these effects is the instantaneous stopping power ratio, Rn, which is defined as

Rn = Sn

nS1
(1)

where Sn and S1 are the stopping powers of the target for the molecular ion and each of its
atomic constituents, respectively, and n is the number of atomic ions that form the molecular
ion. Note that Rn = 1 means that there are no vicinage effects; Rn > 1 (or <1) means an
increase (or diminution) of the energy lost by the molecular ion compared with the energy lost
by its n uncorrelated constituent atomic ions.

In order to compare the experimental values of the stopping power ratio with our calc-
ulated values, we must consider the temporal evolution of the B+

n-ion structure during its travel
through the solid, averaging the instantaneous stopping power ratio, equation (1), over the
dwell time, τ = D/v:

〈Rn〉 = 1

τ

∫ τ

0
dt Rn(t) (2)

where D is the target thickness and v is the molecular ion velocity [21].
We calculate the stopping power ratio for the projectile within the framework of

the dielectric formalism, which supposes a linear response of the medium to an external
perturbation. In this scheme, the instantaneous stopping power ratio for n correlated atomic
ions that travel with velocity v in a target is given by [19]

Rn = 1 +
2

n

n−1∑
i=1

n∑
j>i

I (rij ) (3)

where I (rij ) is the vicinage function that takes into account the spatial correlation between the
atomic ions i and j separated by an interatomic distance rij . The previous equation arises from
a superposition of undisturbed wake potentials for the individual atomic ions. For a random
orientation of the molecular ion with respect to the beam direction, the vicinage function I (rij )

is given by

I (rij ) = 2

πv2S1

∫ ∞

0

dk

k
[Z − ρ(k)]2 sin(krij )

krij

∫ kv

0
dω ω Im

[ −1

ε(k, ω)

]
(4)

† Atomic units are defined by the condition me = e = h̄ = 1, where me is the mass of the electron and e is the
elementary charge.
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where k and ω are, respectively, the momentum and energy transferred to the excitations of the
target electrons; Z is the atomic number of each atomic ion and ρ(k) is the Fourier transform
of its electronic density; Im[−1/ε(k, ω)] is the energy-loss function (ELF) of the target, which
describes its response to an external perturbation. We have used a sum of Mermin-type ELF [22]
in order to obtain a realistic description of the amorphous carbon ELF [23,24]. We include the
contribution to the energy loss of the outer electrons as well as that of the electrons from the
atomic inner shells—that is, the full spectrum of excitations. More details about this procedure
and the fitting parameters used for the amorphous carbon ELF are given in reference [24]. The
stopping power for a boron atomic ion, S1, was also calculated using the dielectric formalism:

S1 = 2

πv2

∫ ∞

0

dk

k
[Z − ρ(k)]2

∫ kv

0
dω ω Im

[ −1

ε(k, ω)

]
. (5)

We have used the 1s and 2s hydrogen-like orbitals to describe the electronic density of the
boron atomic ions. The corresponding Fourier transform, ρ(k), can be written in a compact
form as follows:

ρ(k) = [N�(2 − N) + 2�(N − 2)]

[
1 +

(
k

2ZS

)2
]−2

− 2(N − 2)�(N − 2)

[(
k

ZS

)2

− 1

] [(
k

ZS

)2

− 1

2

] [
1 +

(
k

2ZS

)2
]−4

(6)

where �(· · ·) is the Heaviside step function. In the above expression, N is the average number
of electrons bounded in the 1s and 2s atomic orbitals, which depends [20] on the projectile
velocity (note that N < 4 when the projectile energy is 0.8 MeV/atom), and ZS is the effective
nuclear charge given by Slater’s rules [25]. This model is, in a first approximation, a good
description of the electronic density of an atomic ion and, for the low value of N involved in
our calculations, it is better than the general treatment proposed in reference [26].

The stopping power ratio for molecular ions depends on the geometrical arrangement of
the atomic ions that form the molecule. In this work we consider the molecular ions from
B+

2 to B+
6, whose geometrical structures were solved by means of ab initio calculations in

references [27, 28]. The results obtained in these works are rather similar, and they indicate
planar or quasi-planar geometries for the B+

n (n = 2–6) ions; the corresponding boron molecular
geometries appear as insets in figures 1(a) and 1(b). B+

2 is a linear molecule with a bond length
of 4.16 au, B+

3 is an equilateral triangle with a bond length of 2.93 au, and B+
4 is a rhombus where

the bond length is 2.91 au, and their bond angles are 89.92◦, 90.08◦, and 89.92◦ respectively;
for simplicity, we will suppose here that the B+

4 ion is a perfect square. B+
5 is a slightly deformed

pentagon where the average bond length is 2.95 au; in our calculations we assume it to be a
regular pentagon since the three bond lengths differ by only 0.002 au. Finally, B+

6 is a distorted
hexagon where the distance between the centre of the ring and the two atoms along the larger
axis is 3.78 au, the four lateral atoms are at 2.40 au from the centre, and the angle between the
centre and two inequivalent atoms is 52.0◦.

Due to the symmetry of the initial structures of the B+
n (n = 2–5) ions, the Coulomb

explosion changes only the molecule size, preserving their initial shapes. For this reason, one
single variable is enough to characterize the temporal evolution of each molecular structure,
and we choose the interatomic distance between the nearest atomic neighbours, rn. However,
B+

6 is not a symmetrical hexagon and, therefore, the Coulomb explosion slightly changes the
molecule shape; in this case, we describe the temporal evolution of the B+

6 structure by means
of a set of distances, rij , between the atomic ions i and j .

In order to obtain the temporal evolution of the interatomic distances between the n boron
atomic ions, we solve numerically the set of coupled Newton equations for these atomic ions,
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Figure 1. The temporal evolution of the normalized interatomic distances between the atomic
constituents of the boron molecular ions moving through amorphous carbon: (a) rn/r0

n for B+
n

(n = 2–5) and (b) rij /r0
ij for B+

6 . The numerical labels on the curves in (a) and (b) indicate n

and ij , respectively. The projectile energy is 0.8 MeV/atom. The insets show the B+
n structures.

r0
2 = 4.16 au, r0

3 = 2.93 au, r0
4 = 2.91 au, r0

12 = 2.98 au, r0
13 = 3.78 au, and r0

16 = 2.96 au.

each with a charge Z′ = Z − N , interacting through a screened Coulomb potential. For any
pair of atomic ions separated an interatomic distance rij , this potential is given by

V (rij ) = Z′

rij

exp

(
− rij

a

)
(7)

where the screening length is a = v/ωp if v > vF and a = vF/(31/2ωp) otherwise [29]; ωp

(=0.945 au) is the plasmon energy and vF (=1.2 au) is the Fermi velocity for amorphous
carbon.

3. Results and discussion

Figure 1(a) shows the interatomic distance rn (normalized to the initial interatomic distance
r0
n between the nearest atomic neighbours) as a function of the time after the molecule enters

into the target, when the B+
n energy is 0.8 MeV/atom; solid, dashed, dotted, and dot–dashed

lines correspond to n = 2, 3, 4, and 5, respectively. We found that, as a consequence of the
geometrical arrangement of the atoms in the molecular ion, B+

3 experiences a bigger repulsion
force than B+

4, despite the fact that r0
4 < r0

3 . Figure 1(b) shows the temporal evolution of three
typical interatomic distances of the B+

6 ion when the projectile energy is 0.8 MeV/atom; solid,
dashed, and dotted lines correspond to r12, r13, and r16, respectively.

By means of the relationship between the time, t , and rn (for B+
n (n = 2–5)) or rij (for

B+
6), we can obtain the vicinage function, I (rn) or I (rij ), corresponding to each instantaneous

geometrical arrangement (see equation (4)). In figures 2(a) and 2(b), we present the temporal
evolution of the vicinage function for B+

n (n = 2–5) ions and B+
6 ions, respectively, when the

projectile energy is 0.8 MeV/atom. The vicinage function has positive and negative values,
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Figure 2. The temporal evolution of the vicinage function for the B+
n ions moving through

amorphous carbon. The numerical labels on the curves in (a) and (b) indicate n and ij , respectively.
The projectile energy is 0.8 MeV/atom.

depending on the interatomic distances, because the force due to the wake potential of the
leading ion acting on the trailing ones may be repulsive or attractive [24]. The vicinage
function I (rn) is rather similar for B+

n (n = 3–5) ions, because the initial interatomic distances
r0
n between the nearest atomic neighbours do not differ appreciably. However, the vicinage

function for B+
2 is the smallest one, because r0

2 > r0
n (n = 3–5), and the vicinage effects

decrease for larger distances. Figure 2(b) shows the vicinage function for three representative
interatomic distances of the B+

6 ion: I (r12), I (r13), and I (r16); it is important to note that the
interference effects can cancel out in some cases, because the vicinage function for a given
time could be negative for two atomic ions and positive for the other pair of atomic ions.

Using the previous values of the vicinage function as a function of time, we have evaluated
the average stopping power ratio 〈Rn〉 according to equations (2) and (3). This 〈Rn〉 is the
magnitude to be compared with the experimental data [17] obtained after the constituents of
the molecular ions leave the amorphous carbon foil.

Figure 3 shows the average stopping power ratio versus the dwell time, τ , for the case of
B+

n (n = 2–6) ions incident with an energy of 0.8 MeV/atom on amorphous carbon foils. The
symbols in figure 3 represent the experimental stopping power ratio with the corresponding
error bars (rather larger for small values of τ ) [17]; these data seem to suggest that 〈Rn〉 > 1,
although 〈Rn〉 = 1 should also be consistent with the experimental results. The thick lines
(labelled with the numbers of molecular constituents) show our calculation results and the thin
solid lines (in figures 3(b) and 3(c)) show the calculation results obtained by Kaneko [18].
Our results show that 〈Rn〉 is always greater than unity, as the experimental results suggest;
however, the average stopping power ratio obtained by Kaneko [18] is equal to or smaller than
unity even for thinner foils; this is opposite to the trends shown by the experimental points.
A possible explanation of these differences is that different energy-loss functions were used
in each of the theoretical treatments. In our calculations the maximum vicinage effects in
the average stopping power ratio are produced at smaller dwell times (thinner foils) when the
boron atomic ions remain closer. At large dwell times the average stopping power ratio goes to
one, since the Coulomb explosion of the molecular ion appreciably separates the atomic ions,
which then travel in a non-correlated way through the target for a longer time. This behaviour
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Figure 3. Stopping power ratio as a function of dwell time for the B+
n ions after travelling through

an amorphous carbon foil. The thick lines (with the numerical labels indicating the value of n) show
our calculation results, the thin solid lines show the theoretical results obtained by Kaneko [18],
and the symbols represent the experimental data [17]. The projectile energy is 0.8 MeV/atom.

agrees satisfactorily with the trends shown by the experimental data for all molecular ions.
We obtain that the average stopping power ratio increases with the molecular size for the

B+
n (n = 2–4) ions, as can be seen in figures 3(a)–3(c). This is due to the contribution of two

factors related to the molecular structure: (i) the increase of the number n of atomic ions that
constitute the molecular ion, and (ii) the decrease of the initial interatomic distances, r0

n . The
former means that more vicinage effects are expected because more ions are interacting; the
latter corresponds to a decrease of the initial interatomic distances (r0

2 > r0
3 > r0

4 ), which also
contributes to the increase of the vicinage effects; consequently, the stopping power ratio rises
as n goes from 2 to 4. Moreover, 〈R2〉 is practically constant and almost equal to unity for all
foil thicknesses, which is due to the large value of r0

2 . However, for the case of B+
n (n = 4–6)

ions, figure 3(d) shows that there are no important differences between their average stopping
power ratios, although now the number of ions increases. These small values of 〈Rn〉 for
n = 4–6 and the absence of a significant variation in their behaviour could be explained in
terms of cancellations of the vicinage effects due to the presence of several atomic ions at
different distances from a given atomic ion.

4. Conclusions

We have discussed the influence of the molecular structure on the energy loss of boron molecular
ions travelling through amorphous carbon foils. The electronic excitations (due to the valence
and inner-shell electrons) induced in the solid are described by the dielectric formalism, using
a realistic description of the energy-loss function. Moreover, we include the electronic density
of the atomic ions using hydrogen-like orbitals with the average number of electrons bound to
each atomic ion, which is a function of the projectile velocity. In order to evaluate the temporal
evolution of the molecular geometry, we have considered the Coulomb explosion of the atomic
ions that compose the molecular ion.

The calculated average stopping power ratio for 0.8 MeV/atom B+
n (n = 2–6) ions has
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been compared with experimental data [17], as a function of the dwell time. Calculations and
experiments agree fairly well.

We conclude that the number of atoms that form the molecular ion, as well as their
geometrical distribution, affect the stopping power ratio for the boron molecular ions; we
find an increment in the stopping power ratio as the molecular size of the B+

n (n = 2–4)
ions increases. However, this tendency does not continue for the larger molecular ions, B+

n

(n = 4–6), due to the cancellation of the vicinage effects due to the different interatomic
distances of the atomic ions.

The work presented is based on a first-order perturbation theory and it does not consider
the Barkas and Bloch terms. The contribution to the stopping power due to the first of these is
∼5% for the case studied here [30]; therefore, the inclusion of the Barkas term would probably
not significantly affect our calculations, i.e., the stopping power ratio would remain greater
than unity and inside the experimental error bars. However, the Barkas term should be included
when more accurate calculations of the stopping power and the vicinage function are desired, in
order to allow comparison with experimental data with smaller errors bars. On the other hand,
the Bloch term—the other correction—should be taken into account in an improved model;
recent calculations [31] suggest that the inclusion of the Bloch correction would increase our
values of the stopping power ratio by about 20%, which would make them in agreement with
the experimental data.
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